MAKALAH KIMIA TENTANG MINYAK BUMI



MAKALAH KIMIA
“Minyak Bumi”
D
I
S
U
S
U
N
OLEH:
NAMA:SILVIA ERIKA
KELAS: X2
SMA N  2 TAMBANG


Kata pengantar

Dengan menyebut nama Allah SWT yang Maha Pengasih lagi Maha Panyayang, dengan ini saya panjatkan puji syukur atas kehadirat-Nya, yang telah melimpahkan rahmat-Nya kepada saya sehingga saya dapat menyelesaikan makalah  kimia yang saya beri judul "Minyak Bumi”
       Adapun makalah  kimia tentang "Minyak Bumi" ini telah saya usahakan semaksimal mungkin dan tentunya dengan bantuan dari banyak pihak, sehingga dapat memperlancar proses pembuatan makalah ini. Oleh sebab itu, saya juga ingin menyampaikan rasa terima kasih yang sebesar-besarnya kepada semua pihak yang telah membantu saya dalam pembuatan makalah kimia ini.
      Akhirnya penyusun mengharapkan semoga dari makalah kimia tentang "Minyak Bumi" ini dapat diambil manfaatnya sehingga dapat memberikan inpirasi terhadap pembaca. Selain itu, kritik dan saran dari Anda kami tunggu untuk perbaikan makalah ini nantinya.

Pekanbaru,1 May 2017

Penyusun



      

DAFTAR ISI
COVER………………………………………………………..………………........1
KATA PENGANTAR…………………………………………………………………..….2
DAFTAR ISI……………………………………………………………………………..……3
BAB I…………………………………………………………...……………..……4
BAB II……………………………………………………………………….……..5
A.Pengertian Minyak Bumi……………………………………………….……….5
B.Proses pengolahan Minyak Bumi………………………………………….……6
BAB III……………………………………………………………………………11
DAFTAR PUSTAKA…………………………………………………………….12


            


BAB I
PENDAHULUAN

Sumber energi yang banyak digunakan untuk memasak, kendaraan bermotor dan industri berasal dari minyak bumi, gas alam, dan batubara. Ketiga jenis bahan bakar tersebut berasal dari pelapukan sisa-sisa organisme sehingga disebut bahan bakar fosil. Minyak bumi dan gas alam berasal dari jasad renik, tumbuhan dan hewan yang mati. Sisa-sisa organisme itu mengendap di dasar bumi kemudian ditutupi lumpur. Lumpur tersebut lambat laun berubah menjadi batuan karena pengaruh tekanan lapisan di atasnya. Sementara itu dengan meningkatnya tekanan dan suhu, bakteri anaerob menguraikan sisa-sisa jasad renik itu menjadi minyak dan gas. Bahan-bahan atau produk yang dibuat dari minyak dan gas bumi ini disebut petrokimia. Baru-baru ini puluhan ribu jenis bahan petrokimia tersebut dapat digolongkan ke dalam plastik, serat sintetik, karet sintetik, pestisida, detergen, pelarut, pupuk, dan berbagai jenis obat.Minyak bumi dan gas alam merupakan senyawa hidrokarbon. Sifat dan karakteristik dasar minyak bumi inilah yang menentukan perlakuan selanjutnya bagi minyak bumi itu sendiri pada pengolahannya. Hal ini juga akan mempengaruhi produk yang dihasilkan dari pengolahan minyak tersebut.
Pengetahuan tentang minyak bumi dan gas alam sangat penting untuk kita ketahui, mengingat minyak bumi dan gas alam adalah suatu sumber eneri yang tidak dapat diperbaharui, sedangkan penggunaan sumber energi ini dalam kehidupan kita sehari-hari cakupannya sangat luas dan cukup memegang peranan penting atau menguasai hajat hidup orang banyak. Sebagai contoh minyak bumi dan gas alam digunakan sebagai
sumber energi yang banyak digunakan untuk memasak, kendaraan bermotor, dan industri, kedua bahan bakar tersebut berasal dari pelapukan sisa-sisa organisme sehingga disebut bahan bakar fosil.Oleh karena itu sebagai generasi penerus bangsa, kita juga harus memikirkan bahan bakar alternatif apa yang dapat digunakan untuk menggantikan bahan bakar fosil ini, jika suatu saat nanti bahan bakar ini habis.



  

BAB II
PEMBAHASAN

A.    Pengertian Minyak Bumi
Minyak Bumi merupakan campuran dari berbagai macam hidrokarbon, jenis molekul yang paling sering ditemukan adalah alkana (baik yang rantai lurus maupun bercabang), sikloalkana, hidrokarbon aromatik, atau senyawa kompleks seperti aspaltena. Setiap minyak Bumi mempunyai keunikan molekulnya masing-masing, yang diketahui dari bentuk fisik dan ciri-ciri kimia, warna, dan viskositas.
Alkana, juga disebut dengan parafin, adalah hidrokarbon tersaturasi dengan rantai lurus atau bercabang yang molekulnya hanya mengandung unsur karbon dan hidrogen dengan rumus umum CnH2n+2. Pada umumnya minyak Bumi mengandung 5 sampai 40 atom karbon per molekulnya, meskipun molekul dengan jumlah karbon lebih sedikit/lebih banyak juga mungkin ada di dalam campuran tersebut.
Alkana dari pentana (C5H12) sampai oktana (C8H18) akan disuling menjadi bensin, sedangkan alkana jenis nonana (C9H20) sampai heksadekana (C16H34) akan disuling menjadi diesel, kerosene dan bahan bakar jet). Alkana dengan atom karbon 16 atau lebih akan disuling menjadi oli/pelumas. Alkana dengan jumlah atom karbon lebih besar lagi, misalnya parafin wax mempunyai 25 atom karbon, dan aspal mempunyai atom karbon lebih dari 35. Alkana dengan jumlah atom karbon 1 sampai 4 akan berbentuk gas dalam suhu ruangan, dan dijual sebagai elpiji (LPG). Di musim dingin, butana (C4H10), digunakan sebagai bahan campuran pada bensin, karena tekanan uap butana yang tinggi akan membantu mesin menyala pada musim dingin. Penggunaan alkana yang lain adalah sebagai pemantik rokok. Di beberapa negara, propana (C3H8) dapat dicairkan dibawah tekanan sedang, dan digunakan masyarakat sebagai bahan bakar transportasi maupun memasak.
Sikloalkana, juga dikenal dengan nama naptena, adalah hidrokarbon tersaturasi yang mempunyai satu atau lebih ikatan rangkap pada karbonnya, dengan rumus umum CnH2n. Sikloalkana memiliki ciri-ciri yang mirip dengan alkana tapi memiliki titik didih yang lebih tinggi.
Hidrokarbon aromatik adalah hidrokarbon tidak tersaturasi yang memiliki satu atau lebih cincin planar karbon-6 yang disebut cincin benzena, dimana atom hidrogen akan berikatan dengan atom karbon dengan rumus umum CnHn. Hidrokarbon seperti ini jika dibakar maka akan menimbulkan asap hitam pekat. Beberapa bersifat karsinogenik.
Semua jenis molekul yang berbeda-beda di atas dipisahkan dengan distilasi fraksional di tempat pengilangan minyak untuk menghasilkan bensin, bahan bakar jet, kerosin, dan hidrokarbon lainnya. Contohnya adalah 2,2,4-Trimetilpentana (isooktana), dipakai sebagai campuran utama dalam bensin, mempunyai rumus kimia C8H18 dan bereaksi dengan oksigen secara eksotermik:
2 C8H18(l) + 25 O2(g) → 16 CO2(g) + 18 H2O(g) + 10.86 MJ/mol (oktana)
Jumlah dari masing-masing molekul pada minyak Bumi dapat diteliti di laboratorium. Molekul-molekul ini biasanya akan diekstrak di sebuah pelarut, kemudian akan dipisahkan di kromatografi gas, dan kemudian bisa dideteksi dengan detektor yang cocok.
Pembakaran yang tidak sempurna dari minyak Bumi atau produk hasil olahannya akan menyebabkan produk sampingan yang beracun. Misalnya, terlalu sedikit oksigen yang bercampur maka akan menghasilkan karbon monoksida. Karena suhu dan tekanan yang tinggi di dalam mesin kendaraan, maka gas buang yang dihasilkan oleh mesin biasanya juga mengandung molekul nitrogen oksida yang dapat menimbulkan asbut.

B.     Proses Pengolahan Minyak Bumi
1. DESTILASI
            Destilasi adalah pemisahan fraksi-fraksi minyak bumi berdasarkan perbedaan titik didihnya. Dalam hal ini adalah destilasi fraksinasi. Mula-mula minyak mentah dipanaskan dalam aliran pipa dalam furnace (tanur) sampai dengan suhu ± 370°C. Minyak mentah yang sudah dipanaskan tersebut kemudian masuk kedalam kolom fraksinasi pada bagian flash chamber (biasanya berada pada sepertiga bagian bawah kolom fraksinasi). Untuk menjaga suhu dan tekanan dalam kolom maka dibantu pemanasan dengan steam (uap air panas dan bertekanan tinggi).
Minyak mentah yang menguap pada proses destilasi ini naik ke bagian atas kolom dan selanjutnya terkondensasi pada suhu yang berbeda-beda. Komponen yang titik didihnya lebih tinggi akan tetap berupa cairan dan turun ke bawah, sedangkan yang titik didihnya lebih rendah akan menguap dan naik ke bagian atas melalui sungkup-sungkup yang disebut sungkup gelembung. Makin ke atas, suhu yang terdapat dalam kolom fraksionasi tersebut makin rendah, sehingga setiap kali komponen dengan titik didih lebih tinggi akan terpisah, sedangkan komponen yang titik didihnya lebih rendah naik ke bagian yang lebih atas lagi. Demikian selanjutnya sehingga komponen yang mencapai puncak adalah komponen yang pada suhu kamar berupa gas. Komponen yang berupa gas ini disebut gas petroleum, kemudian dicairkan dan disebut LPG (Liquified Petroleum Gas).
Fraksi minyak mentah yang tidak menguap menjadi residu. Residu minyak bumi meliputi parafin, lilin, dan aspal. Residu-residu ini memiliki rantai karbon sejumlah lebih dari 20. 
Fraksi minyak bumi yang dihasilkan berdasarkan rentang titik didihnya antara lain sebagai berikut :
1. Gas 
Rentang rantai karbon : C1 sampai C5
Trayek didih : 0 sampai 50°C
2. Gasolin (Bensin)
Rentang rantai karbon : C6 sampai C11
Trayek didih : 50 sampai 85°C
3. Kerosin (Minyak Tanah)
Rentang rantai karbon : C12 sampai C20
Trayek didih : 85 sampai 105°C
4. Solar
Rentang rantai karbon : C21 sampai C30
Trayek didih : 105 sampai 135°C
5. Minyak Berat
Rentang ranai karbon : C31 sampai C40
Trayek didih : 135 sampai 300°C
6. Residu
Rentang rantai karbon : di atas C40
Trayek didih : di atas 300°C
Fraksi-fraksi minyak bumi dari proses destilasi bertingkat belum memiliki kualitas yang sesuai dengan kebutuhan masyarakat, sehingga perlu pengolahan lebih lanjut yang meliputi proses cracking, reforming, polimerisasi, treating, dan blending. 

2. CRACKING
Setelah melalui tahap destilasi, masing-masing fraksi yang dihasilkan dimurnikan (refinery
            Cracking adalah penguraian molekul-molekul senyawa hidrokarbon yang besar menjadi molekul-molekul senyawa hidrokarbon yang kecil. 
            Contoh cracking ini adalah pada pengolahan minyak solar atau minyak tanah menjadi bensin. Proses ini terutama ditujukan untuk memperbaiki kualitas dan perolehan fraksi gasolin (bensin). Kualitas gasolin sangat ditentukan oleh sifat anti knock (ketukan) yang dinyatakan dalam bilangan oktan. Bilangan oktan 100 diberikan pada isooktan (2,2,4-trimetil pentana) yang mempunyai sifat anti knocking yang istimewa, dan bilangan oktan 0 diberikan pada n-heptana yang mempunyai sifat anti knock yang buruk. Gasolin yang diuji akan dibandingkan dengan campuran isooktana dan n-heptana. Bilangan oktan dipengaruhi oleh beberapa struktur molekul hidrokarbon. 
            Terdapat 3 cara proses cracking, yaitu : 
1. Cara panas (thermal cracking), yaitu dengan penggunaan suhu tinggi dan tekanan yang rendah.
2. Cara katalis (catalytic cracking), yaitu dengan penggunaan katalis. Katalis yang digunakan biasanya SiO2 atau Al2O3 bauksit. Reaksi dari perengkahan katalitik melalui mekanisme perengkahan ion karbonium. Mula-mula katalis karena bersifat asam menambahkna proton ke molekul olevin atau menarik ion hidrida dari alkana sehingga menyebabkan terbentuknya ion karbonium :
3. Hidrocracking merupakan kombinasi antara perengkahan dan hidrogenasi untuk menghasilkan senyawa yang jenuh. Reaksi tersebut dilakukan pada tekanan tinggi. Keuntungan lain dari Hidrocracking ini adalah bahwa belerang yang terkandung dalam minyak diubah menjadi hidrogen sulfida yang kemudian dipisahkan.

3. REFORMINGReforming adalah perubahan dari bentuk molekul bensin yang bermutu kurang baik (rantai karbon lurus) menjadi bensin yang bermutu lebih baik (rantai karbon bercabang). Kedua jenis bensin ini memiliki rumus molekul yang sama bentuk strukturnya yang berbeda. Oleh karena itu, proses ini juga disebut isomerisasi. Reforming dilakukan dengan menggunakan katalis dan pemanasan.
Reforming juga dapat merupakan pengubahan struktur molekul dari hidrokarbon parafin menjadi senyawa aromatik dengan bilangan oktan tinggi. Pada proses ini digunakan katalis molibdenum oksida dalam Al2O3 atau platina dalam lempung.

4. ALKILASI dan POLIMERISASI 
Alkilasi merupakan penambahan jumlah atom dalam molekul menjadi molekul yang lebih panjang dan bercabang. Dalam proses ini menggunakan katalis asam kuat seperti H2SO4, HCl, AlCl3 (suatu asam kuat Lewis). Reaksi secara umum adalah sebagai berikut:
Polimerisasi adalah proses penggabungan molekul-molekul kecil menjadi molekul besar.
Contoh polimerisasi yaitu penggabungan senyawa isobutena dengan senyawa isobutana menghasilkan bensin berkualitas tinggi, yaitu isooktana.
5. TREATING
Treating adalah pemurnian minyak bumi dengan cara menghilangkan pengotor-pengotornya. Cara-cara proses treating adalah sebagai berikut :
  • Copper sweetening dan doctor treating, yaitu proses penghilangan pengotor yang dapat menimbulkan bau yang tidak sedap.
  • Acid treatment, yaitu proses penghilangan lumpur dan perbaikan warna.
  • Dewaxing yaitu proses penghilangan wax (n parafin) dengan berat molekul tinggi dari fraksi minyak pelumas untuk menghasillkan minyak pelumas dengan pour point yang rendah.
  • Deasphalting yaitu penghilangan aspal dari fraksi yang digunakan untuk minyak pelumas
  • Desulfurizing (desulfurisasi), yaitu proses penghilangan unsur belerang.
            Sulfur merupakan senyawa yang secara alami terkandung dalam minyak bumi atau gas, namun keberadaannya tidak dinginkan karena dapat menyebabkan berbagai masalah, termasuk di antaranya korosi pada peralatan proses, meracuni katalis dalam proses pengolahan, bau yang kurang sedap, atau produk samping pembakaran berupa gas buang yang beracun (sulfur dioksida, SO2) dan menimbulkan polusi udara serta hujan asam. Berbagai upaya dilakukan untuk menyingkirkan senyawa sulfur dari minyak bumi, antara lain menggunakan proses oksidasi, adsorpsi selektif, ekstraksi, hydrotreating, dan lain-lain. Sulfur yang disingkirkan dari minyak bumi ini kemudian diambil kembali sebagai sulfur elemental.
            Desulfurisasi merupakan proses yang digunakan untuk menyingkirkan senyawa sulfur dari minyak bumi. Pada dasarnya terdapat 2 cara desulfurisasi, yaitu dengan:
  1. Ekstraksi menggunakan pelarut, serta 
  2. Dekomposisi senyawa sulfur (umumnya terkandung dalam minyak bumi dalam bentuk senyawa merkaptan, sulfida dan disulfida) secara katalitik dengan proses hidrogenasi selektif menjadi hidrogen sulfida (H2S) dan senyawa hidrokarbon asal dari senyawa belerang tersebut. Hidrogen sulfida yang dihasilkan dari dekomposisi senyawa sulfur tersebut kemudian dipisahkan dengan cara fraksinasi atau pencucian/pelucutan.
6. BLENDING
            Proses blending adalah penambahan bahan-bahan aditif kedalam fraksi minyak bumi dalam rangka untuk meningkatkan kualitas produk tersebut. Bensin yang memiliki berbagai persyaratan kualitas merupakan contoh hasil minyak bumi yang paling banyak digunakan di barbagai negara dengan berbagai variasi cuaca. Untuk memenuhi kualitas bensin yang baik, terdapat sekitar 22 bahan pencampur yang dapat ditambanhkan pada proses pengolahannya.

            Diantara bahan-bahan pencampur yang terkenal adalah tetra ethyl lead (TEL). TEL berfungsi menaikkan bilangan oktan bensin. Demikian pula halnya dengan pelumas, agar diperoleh kualitas yang baik maka pada proses pengolahan diperlukan penambahan zat aditif. Penambahan TEL dapat meningkatkan bilangan oktan, tetapi dapat menimbulkan pencemaran udara




BAB III
PENUTUP

Proses pembentukan minyak bumi yaitu berasal dari reaksi kalsium karbida, CaC2 (dari reaksi antara batuan karbonat dan logam alkali) dan air yang menghasilkan asetilena yang dapat berubah menjadi minyak bumi pada temperatur dan tekanan tinggi. Produk hasil pengolahan minyak bumi antara lain : Bahan bakar, napta, gasoline, kerosin, minyak solar, minyak pelumas dan residu. Minyak bumi selain bahan bakar juga sebagai bahan industri kimia yang penting dan bermanfaat dalam kehidupan sehari-hari yang disebut petrokimia.
Dampak yang ditimbulkan dari pembakaran bahan bakar yang tidak sempurna Pembakaran bahan bakar yang tidak sempurna, akan menghasilkan senyawa-senyawa kimia yang dalam bentuk gas dapat mencemari udara dan kadang-kadang mengasilkan partikel-pertikel yang menimbulkan asap cukup tebal, sehingga dapat menyebabkan terjadinya pencemaran udara.
            Pencemaran lain adalah gas karbon monoksida, Co, gas ini berbahaya pada tubuh manusia karena lebih mudah terikat pada hemoglobin darah, sehingga kemampuan darah mengikat oksigen menjadi menurun.


DAFTAR PUSTAKA






SEMOGA BERMANFAAT
Powered by: Zona Intranet Member
Dikutip Oleh: PaniqueCreats

Komentar

Posting Komentar

Postingan populer dari blog ini

PROPOSAL PERMOHONAN SEWA KANTIN

PUISI TAUFIK ISMAIL

TAHAP-TAHAP SELEKSI TELKOMSEL TRAINEE