MAKALAH KIMIA MINYAK BUMI



Selasa, 09 Mei 2017
 MAKALAH KIMIA

MINYAK BUMI

DI
S
U
S
U
N

OLEH

HENI NURLITA

Kelas: x4

SMAN 2 TAMBANG




 KATA PENGANTAR

   

Puji syukur kami panjatkan kehadirat Tuhan yang Maha Esa, yang atas rahmat-Nya maka kami dapat menyelesaikan penyusunan makalah yang berjudul “Minyak Bumi”. Penulisan makalah adalah merupakan salah satu tugas dan persyaratan untuk menyelesaikan tugas mata pelajaran Kimia Semester II di SMA NEGERI 2 TAMBANG.

Adapun di dalam makalah ini kami membahas tentang :
ü  Asal Mula dan Keberadaan Minyak Bumi      
ü  Pengolahan Minyak Bumi       
ü  Fraksi-Fraksi dan Kegunaan Minyak Bumi     
ü  Dampak dan Problematika (Permasalahan) Minyak Bumi      

Dalam penulisan makalah ini, kami merasa masih banyak kekurangan-kekurangan, baik pada teknis penulisan maupun materi, mengingat akan kemampuan yang kami miliki. Untuk itu kritik dan saran dari semua pihak sangat penulis harapkan demi penyempurnaan pembuatan makalah ini.

Akhirnya kami berharap semoga makalah ini membantu teman-teman mengetahui secara garis besar tentang Minyak Bumi. Terimakasih kami ucapkan atas waktunya untuk membaca makalah kami.
                                                                                   


Kualu , 09 Mei  2017
           


Penyusun







DAFTAR ISI


*


      Kata Pengantar           ………………………………………………………..          i
*    



 Daftar Isi                     ………………………………………………………..            ii
*     


·         Asal Mula dan Keberadaan Minyak Bumi     ………………………………..      3
   BAB I

*      *
   ·         Pengolahan Minyak Bumi     ………………………………………………..       6                            BAB II   

·         Fraksi-Fraksi dan Kegunaan Minyak Bumi    …………………………………     11
*      BAB III

·         Dampak dan Problematika (Permasalahan) Minyak Bumi     …………………     14
       BAB IV
*   

   Kesimpulan          …………………………………………………………………     17
*     

 Saran         …………………………………………………………………………     18
*    

  Daftar Pustaka         ………………………………………………………………     18







BAB 1
Asal Mula Dan Keberadaan Minyak Bumi

Minyak Bumi merupakan campuran dari berbagai macam hidrokarbon, jenis molekul yang paling sering ditemukan adalah alkana (baik yang rantai lurus maupun bercabang), sikloalkana, hidrokarbon aromatik, atau senyawa kompleks seperti aspaltena. Setiap minyak Bumi mempunyai keunikan molekulnya masing-masing, yang diketahui dari bentuk fisik dan ciri-ciri kimia, warna, dan viskositas.
Alkana, juga disebut dengan parafin, adalah hidrokarbon tersaturasi dengan rantai lurus atau bercabang yang molekulnya hanya mengandung unsur karbon dan hidrogen dengan rumus umum CnH2n+2. Pada umumnya minyak Bumi mengandung 5 sampai 40 atom karbon per molekulnya, meskipun molekul dengan jumlah karbon lebih sedikit/lebih banyak juga mungkin ada di dalam campuran tersebut.
Alkana dari pentana (C5H12) sampai oktana (C8H18) akan disuling menjadi bensin, sedangkan alkana jenis nonana (C9H20) sampai heksadekana (C16H34) akan disuling menjadi diesel, kerosene dan bahan bakar jet). Alkana dengan atom karbon 16 atau lebih akan disuling menjadi oli/pelumas. Alkana dengan jumlah atom karbon lebih besar lagi, misalnya parafin wax mempunyai 25 atom karbon, dan aspal mempunyai atom karbon lebih dari 35. Alkana dengan jumlah atom karbon 1 sampai 4 akan berbentuk gas dalam suhu ruangan, dan dijual sebagai elpiji (LPG). Di musim dingin, butana (C4H10), digunakan sebagai bahan campuran pada bensin, karena tekanan uap butana yang tinggi akan membantu mesin menyala pada musim dingin. Penggunaan alkana yang lain adalah sebagai pemantik rokok. Di beberapa negara, propana (C3H8) dapat dicairkan dibawah tekanan sedang, dan digunakan masyarakat sebagai bahan bakar transportasi maupun memasak.
Sikloalkana, juga dikenal dengan nama naptena, adalah hidrokarbon tersaturasi yang mempunyai satu atau lebih ikatan rangkap pada karbonnya, dengan rumus umum CnH2n. Sikloalkana memiliki ciri-ciri yang mirip dengan alkana tapi memiliki titik didih yang lebih tinggi.
Hidrokarbon aromatik adalah hidrokarbon tidak tersaturasi yang memiliki satu atau lebih cincin planar karbon-6 yang disebut cincin benzena, dimana atom hidrogen akan berikatan dengan atom karbon dengan rumus umum CnHn. Hidrokarbon seperti ini jika dibakar maka akan menimbulkan asap hitam pekat. Beberapa bersifat karsinogenik.
Semua jenis molekul yang berbeda-beda di atas dipisahkan dengan distilasi fraksional di tempat pengilangan minyak untuk menghasilkan bensin, bahan bakar jet, kerosin, dan hidrokarbon lainnya. Contohnya adalah 2,2,4-Trimetilpentana (isooktana), dipakai sebagai campuran utama dalam bensin, mempunyai rumus kimia C8H18 dan bereaksi dengan oksigen secara eksotermik:
 C8H18(l) + 25 O2(g) → 16 CO2(g) + 18 H2O(g) + 10.86 MJ/mol (oktana)
Jumlah dari masing-masing molekul pada minyak Bumi dapat diteliti di laboratorium. Molekul-molekul ini biasanya akan diekstrak di sebuah pelarut, kemudian akan dipisahkan di kromatografi gas, dan kemudian bisa dideteksi dengan detektor yang cocok.
Pembakaran yang tidak sempurna dari minyak Bumi atau produk hasil olahannya akan menyebabkan produk sampingan yang beracun. Misalnya, terlalu sedikit oksigen yang bercampur maka akan menghasilkan karbon monoksida. Karena suhu dan tekanan yang tinggi di dalam mesin kendaraan, maka gas buang yang dihasilkan oleh mesin biasanya juga mengandung molekul nitrogen oksida yang dapat menimbulkan asbut.

Ternyata untuk mendapatkan minyak dan gas bumi harus melalui proses yang sangat panjang.

Berikut sedikit penjelasannya :

1.Seismic

Proses ini bertujuan untuk mencari tempat yang memiliki kandungan Gas/ minyak Bumi. Dengan menggunakan gelombang Akustik (acoustic waves) yang merambat ke lapisan tanah. Gelombang ini direfleksikan dan ditangkap lagi oleh sensor. Dari proses perambatan gelombang ini akan diolah dan terlihatlah lapisan-lapisan tanah untuk diolah manakah lapisan yang berpotensi mengandung gas/oil.

2. Drilling and well construction

Proses ini disebut juga proses "pengeboran minyak". Biasanya pake rig (tempat untuk mensupport proses pengeboran, dsb). Simpelnya, kita membuat lubang di tempat yang diidentifikasi ada kemungkinan sumber minyak/gas di tempat tersebut.
Perlu di ketahui dalam proses ini ada kemungkinan blow out (pressure yang ga bisa di kontrol, langsung ke surface), jadi harus ada pengendalian pressure dari dalam tanah.

Pressure downhole / dalam tanah lebih besar dari pressure atmosferik, untuk mengimbanginya biasanya pake mud a.k.a lumpur dengan spesific gravity (berat jenis) tertentu. Mud ini akan menciptakan Hydrostatic pressure yang bisa menahan pressure dari dalam.

Setelah "lubang" siap, maka selanjutnya akan di cek apakah ada kandungan minyak/ gasnya.
Proses ini yang paling mahal. Tool nya mahal, karena harus tahan pressure dan temperature yang tinggi. Di samping memetakan lapisan tanah, proses ini juga mengambil sample untuk nantinya d cek kandungannya (minyak, gas, atau cuma air).

Dari sini ketahuan lapisan tanah dan batuan. Mana yang mengandung air, mana yang ada gas, dan lapisan tanah mana yang "mungkin" ada kandungan minyaknya.Proses ini adalah proses dimana lapisan yang diperkirakan mengandung oil/gas di "tembak", dengan explosif. Setelah itu minyak yang terkandung diantara pori-pori batuan akan mengalir menuju tempat yang pressure nya lebih kecil (ke atmosferik a.k.a ke permukaan tanah).


Untuk mengontrol pergerakan ini, sumur diisi dengan liquid tertentu untuk menjaga under balance (sumur masih bisa di "kendalikan" dan tidak blow out), contoh liquid: brine, diesel, atau air saja.

Gas, minyak, air, ataupun berbagai macam zat yang keluar akan dicari Rate nya. Untuk minyak berapa BOPD(barrell oil per day) yang bisa dihasilkan. Untuk gas, berapa MMscfMM/d (Million metric standart cubic feet per day atau berapa juta cubic feet) yang bisa dihasilkan sumur tersebut.

Proses testing ini juga mengambil sample liquid maupun gas, dan juga data-data tentang pressure, temperature, specific grafity, dll untuk selanjutnya diolah oleh reservoir engineer. Data ini akan menunjukan seberapa besar dan seberapa lama kemampuan berproduksi dari reservoir sumur tersebut.

Gas/minyak dibakar agar tidak mencemari lingkungan. Sistem pembakarannya sudah sangat maju, dengan mixture gas, minyak, angin, dan air untuk menjadikan pembakaran yang optimal.

Proses ini adalah proses instalasi aksesoris sumur sebelum nantinya sumur siap diproduksi. Fungsi utamanya adalah menyaring "pasir" yang dihasilkan setelah proses penembakan dalam well testing.
Pasir yang sampai ke surface dengan pressure diibaratkan "peluru" yang nantinya akan membahayakan line produksi. Pipa produksi akan terkikis oleh pasir dan akhirnya Burst (pecah).

Dengan Completion ini (alatnya gravel pack), akan menangkap pasir di dalam sumur dan menyaringnya sehingga tidak ikut ke surface.
Inilah proses yang membahagiakan, dimana sumur siap untuk berproduksi dan nantinya akan diolah lagi ke tempat penyulingan untuk diolah dalam berbagai bentuk. Contoh: Minyak tanah, bensin, solar,kerosin, LPG, dan lain-lain.







BAB II
Pengolahan Minyak Bumi


Minyak bumi biasanya berada 3-4 km di bawah permukaan laut. Minyak bumi diperoleh dengan membuat sumur bor. Minyak mentah yang diperoleh ditampung  dalam kapal tanker atau dialirkan melalui pipa ke stasiun tangki atau ke kilang minyak.
Minyak mentah (cude oil) berbentuk cairan kental hitam dan berbau kurang sedap. Minyak mentah belum dapat digunakan sebagai bahan bakar maupun untuk keperluan lainnya, tetapi harus diolah terlebih dahulu. Minyak mentah mengandung sekitar 500 jenis hidrokarbon dengan jumlah atom C-1 sampai 50. Titik didih hidrokarbon meningkat seiring bertambahnya jumlah atom C yang berada di dalam molekulnya. Oleh karena itu, pengolahan minyak bumi dilakukan melalui destilasi bertingkat, dimana minyak mentah dipisahkan ke dalam kelompok-kelompok (fraksi) dengan titik didih yang mirip. 
   
1. DISTILASI
Destilasi adalah pemisahan fraksi-fraksi minyak bumi berdasarkan perbedaan titik didihnya. Dalam hal ini adalah destilasi fraksinasi. Mula-mula minyak mentah dipanaskan dalam aliran pipa dalam furnace (tanur) sampai dengan suhu ± 370°C. Minyak mentah yang sudah dipanaskan tersebut kemudian masuk kedalam kolom fraksinasi pada bagian flash chamber (biasanya berada pada sepertiga bagian bawah kolom fraksinasi). Untuk menjaga suhu dan tekanan dalam kolom maka dibantu pemanasan dengan steam (uap air panas dan bertekanan tinggi).
Menara destilasi 

Minyak mentah yang menguap pada proses destilasi ini naik ke bagian atas kolom dan selanjutnya terkondensasi pada suhu yang berbeda-beda. Komponen yang titik didihnya lebih tinggi akan tetap berupa cairan dan turun ke bawah, sedangkan yang titik didihnya lebih rendah akan menguap dan naik ke bagian atas melalui sungkup-sungkup yang disebut sungkup gelembung. Makin ke atas, suhu yang terdapat dalam kolom fraksionasi tersebut makin rendah, sehingga setiap kali komponen dengan titik didih lebih tinggi akan terpisah, sedangkan komponen yang titik didihnya lebih rendah naik ke bagian yang lebih atas lagi. Demikian selanjutnya sehingga komponen yang mencapai puncak adalah komponen yang pada suhu kamar berupa gas. Komponen yang berupa gas ini disebut gas petroleum, kemudian dicairkan dan disebut LPG (Liquified Petroleum Gas).
Fraksi minyak mentah yang tidak menguap menjadi residu. Residu minyak bumi meliputi parafin, lilin, dan aspal. Residu-residu ini memiliki rantai karbon sejumlah lebih dari 20.
Fraksi minyak bumi yang dihasilkan berdasarkan rentang titik didihnya antara lain sebagai berikut :
1. Gas
Rentang rantai karbon : C1 sampai C5
Trayek didih : 0 sampai 50°C
2. Gasolin (Bensin)
Rentang rantai karbon : C6 sampai C11
Trayek didih : 50 sampai 85°C
3. Kerosin (Minyak Tanah)
Rentang rantai karbon : C12 sampai C20
Trayek didih : 85 sampai 105°C
4. Solar
Rentang rantai karbon : C21 sampai C30
Trayek didih : 105 sampai 135°C
5. Minyak Berat
Rentang ranai karbon : C31 sampai C40
Trayek didih : 135 sampai 300°C
6. Residu
Rentang rantai karbon : di atas C40
Trayek didih : di atas 300°C
Fraksi-fraksi minyak bumi dari proses destilasi bertingkat belum memiliki kualitas yang sesuai dengan kebutuhan masyarakat, sehingga perlu pengolahan lebih lanjut yang meliputi proses cracking, reforming, polimerisasi,I treating, dan blending.

2. CRACKING
Setelah melalui tahap destilasi, masing-masing fraksi yang dihasilkan dimurnikan (refinery), seperti terlihat dibawah ini:
Cracking adalah penguraian molekul-molekul senyawa hidrokarbon yang besar menjadi molekul-molekul senyawa hidrokarbon yang kecil. Contoh cracking ini adalah pengolahan minyak solar atau minyak tanah menjadi bensin.
Proses ini terutama ditujukan untuk memperbaiki kualitas dan perolehan fraksi gasolin (bensin). Kualitas gasolin sangat ditentukan oleh sifat anti knock (ketukan) yang dinyatakan dalam bilangan oktan. Bilangan oktan 100 diberikan pada isooktan (2,2,4-trimetil pentana) yang mempunyai sifat anti knocking yang istimewa, dan bilangan oktan 0 diberikan pada n-heptana yang mempunyai sifat anti knock yang buruk. Gasolin yang diuji akan dibandingkan dengan campuran isooktana dan n-heptana. Bilangan oktan dipengaruhi oleh beberapa struktur molekul hidrokarbon.
Terdapat 3 cara proses cracking, yaitu :
a. Cara panas (thermal cracking), yaitu dengan penggunaan suhu tinggi dan tekanan yang rendah
b. Cara katalis (catalytic cracking), yaitu dengan penggunaan katalis. Katalis yang digunakan biasanya SiO2 atau Al2O3 bauksit. Reaksi dari perengkahan katalitik melalui mekanisme perengkahan ion karbonium. Mula-mula katalis karena bersifat asam menambahkna proton ke molekul olevin atau menarik ion hidrida dari alkana sehingga menyebabkan terbentuknya ion karbonium :

c. Hidrocracking
Hidrocracking merupakan kombinasi antara perengkahan dan hidrogenasi untuk menghasilkan senyawa yang jenuh. Reaksi tersebut dilakukan pada tekanan tinggi. Keuntungan lain dari Hidrocracking ini adalah bahwa belerang yang terkandung dalam minyak diubah menjadi hidrogen sulfida yang kemudian dipisahkan.

3. REFORMING
Reforming adalah perubahan dari bentuk molekul bensin yang bermutu kurang baik (rantai karbon lurus) menjadi bensin yang bermutu lebih baik (rantai karbon bercabang). Kedua jenis bensin ini memiliki rumus molekul yang sama bentuk strukturnya yang berbeda. Oleh karena itu, proses ini juga disebut isomerisasi. Reforming dilakukan dengan menggunakan katalis dan pemanasan.
Reforming juga dapat merupakan pengubahan struktur molekul dari hidrokarbon parafin menjadi senyawa aromatik dengan bilangan oktan tinggi. Pada proses ini digunakan katalis molibdenum oksida dalam Al2O3 atauplatina dalam lempung.

4.ALKILASI
Alkilasi merupakan penambahan jumlah atom dalam molekul menjadi molekul yang lebih panjang dan bercabang. Dalam proses ini menggunakan katalis asam kuat seperti H2SO4, HCl, AlCl3 (suatu asam kuat Lewis). Reaksi secara umum adalah sebagai berikut:

RH + CH2=CR’R’’ R-CH2-CHR’R”

Polimerisasi adalah proses penggabungan molekul-molekul kecil menjadi molekul besar. Reaksi umumnya adalah sebagai berikut :

M CnH2n Cm+nH2(m+n)

Contoh polimerisasi yaitu penggabungan senyawa isobutena dengan senyawa isobutana menghasilkan bensin berkualitas tinggi, yaitu isooktana.

5. TREATING

Treating adalah pemurnian minyak bumi dengan cara menghilangkan pengotor-pengotornya. Cara-cara proses treating adalah sebagai berikut :

Copper sweetening dan doctor treating, yaitu proses penghilangan pengotor yang dapat menimbulkan bau yang tidak sedap.
Acid treatment, yaitu proses penghilangan lumpur dan perbaikan warna.
Dewaxing yaitu proses penghilangan wax (n parafin) dengan berat molekul tinggi dari fraksi minyak pelumas untuk menghasillkan minyak pelumas dengan pour point yang rendah.
Deasphalting yaitu penghilangan aspal dari fraksi yang digunakan untuk minyak pelumas
Desulfurizing (desulfurisasi), yaitu proses penghilangan unsur belerang.
Sulfur merupakan senyawa yang secara alami terkandung dalam minyak bumi atau gas, namun keberadaannya tidak dinginkan karena dapat menyebabkan berbagai masalah, termasuk di antaranya korosi pada peralatan proses, meracuni katalis dalam proses pengolahan, bau yang kurang sedap, atau produk samping pembakaran berupa gas buang yang beracun (sulfur dioksida, SO2) dan menimbulkan polusi udara serta hujan asam. Berbagai upaya dilakukan untuk menyingkirkan senyawa sulfur dari minyak bumi, antara lain menggunakan proses oksidasi, adsorpsi selektif, ekstraksi, hydrotreating, dan lain-lain. Sulfur yang disingkirkan dari minyak bumi ini kemudian diambil kembali sebagai sulfur elemental.
Desulfurisasi merupakan proses yang digunakan untuk menyingkirkan senyawa sulfur dari minyak bumi. Pada dasarnya terdapat 2 cara desulfurisasi, yaitu dengan :

1. Ekstraksi menggunakan pelarut, serta

2. Dekomposisi senyawa sulfur (umumnya terkandung dalam minyak bumi dalam bentuk senyawa merkaptan, sulfida dan disulfida) secara katalitik dengan proses hidrogenasi selektif menjadi hidrogen sulfida (H2S) dan senyawa hidrokarbon asal dari senyawa belerang tersebut. Hidrogen sulfida yang dihasilkan dari dekomposisi senyawa sulfur tersebut kemudian dipisahkan dengan cara fraksinasi atau pencucian/pelucutan.

Akan tetapi selain 2 cara di atas, saat ini ada pula teknik desulfurisasi yang lain yaitu bio-desulfurisasi. Bio-desulfurisasi merupakan penyingkiran sulfur secara selektif dari minyak bumi dengan memanfaatkan metabolisme mikroorganisme, yaitu dengan mengubah hidrogen sulfida menjadi sulfur elementer yang dikatalis oleh enzim hasil metabolisme mikroorganisme sulfur jenis tertentu, tanpa mengubah senyawa hidrokarbon dalam aliran proses. Reaksi yang terjadi adalah reaksi aerobik, dan dilakukan dalam kondisi lingkungan teraerasi. Keunggulan proses ini adalah dapat menyingkirkan senyawa sulfur yang sulit disingkirkan, misalnya alkylated dibenzothiophenes. Jenis mikroorganisme yang digunakan untuk proses bio-desulfurisasi umumnya berasal dari Rhodococcus sp, namun penelitian lebih lanjut juga dikembangkan untuk penggunaan mikroorganisme dari jenis lain.
Proses ini mulai dikembangkan dengan adanya kebutuhan untuk menyingkirkan kandungan sulfur dalam jumlah menengah pada aliran gas, yang terlalu sedikit jika disingkirkan menggunakan amine plant, dan terlalu banyak untuk disingkirkan menggunakan scavenger. Selain untuk gas alam dan hidrokarbon, bio-desulfurisasi juga digunakan untuk menyingkirkan sulfur dari batubara.
Proses Shell-Paques Untuk Bio-Desulfurisasi Aliran Gas
Salah satu lisensi proses bio-desulfurisasi untuk aliran gas adalah Shell Paques dari Shell Global Solutions International dan Paques Bio-Systems. Proses ini sudah diterapkan secara komersial sejak tahun 1993, dan saat ini kurang lebih terdapat sekitar 35 unit bio-desulfurisasi dengan lisensi Shell-Paques beroperasi di seluruh dunia.
Proses ini dapat menyingkirkan sulfur dari aliran gas dan menghasilkan hidrogen sulfida dengan kapasitas mulai dari 100 kg/hari sampai dengan 50 ton/hari, menggunakan mikroorganisme Thiobacillus yang sekaligus bertindak sebagai katalis proses bio-desulfurisasi. Dalam proses ini, aliran gas yang mengandung hidrogen sulfida dilewatkan pada absorber dan dikontakkan pada larutan soda yang mengandung mikroorganisme. Senyawa soda mengabsorbi hidrogen sulfida, dan kemudian dialirkan ke bioreaktor THIOPAQ berupa tangki atmosferik teraerasi dimana mikroorganisme mengubah hidrogen sulfida menjadi sulfur elementer secara biologis dalam kondisi pH 8,2-9. Sulfur hasil reaksi kemudian melalui proses dekantasi untuk memisahkan dengan cairan soda. Cairan soda dikembalikan ke absorber, sedangkan sulfur diperoleh sebagai cake atau sebagai sulfur cair murni. Karena sifatnya yang hidrofilik sehingga mudah diabsorpsi oleh tanah, maka sulfur yang dihasilkan dari proses ini dapat juga dimanfaatkan sebagai bahan baku pupuk.



Keunggulan dari proses Shell-Paques adalah :

dapat menyingkirkan sulfur dalam jumlah besar (efisiensi penyingkiran hidrogen sulfida dapat mencapai 99,8%) hingga menyisakan kandungan hidrogen sulfida yang sangat rendah dalam aliran gas (kurang dari 4 ppm-volume)
pemurnian gas dan pengambilan kembali (recovery) sulfur terintegrasi dalam 1 proses- gas buang (flash gas/vent gas) dari proses ini tidak mengandung gas berbahaya, sehingga sebelum dilepas ke lingkungan tidak perlu dibakar di flare. Hal ini membuat proses ini ideal untuk lokasi-lokasi dimana proses yang memerlukan pembakaran (misalnya flare atau incinerator) tidak dimungkinkan.
menghilangkan potensi bahaya dari penanganan solvent yang biasa digunakan untuk melarutkan hidrogen sulfida dalam proses ekstraksi
sifat sulfur biologis yang hidrofilik menghilangkan resiko penyumbatan (plugging atau blocking) pada pipa
Bio-katalis yang digunakan bersifat self-sustaining dan mampu beradaptasi pada berbagai kondisi proses
Konfigurasi proses yang sederhana, handal dan aman (antara lain beroperasi pada suhu dan tekanan rendah) sehingga mudah untuk dioperasikan
Proses Shell-Paques ini dapat diterapkan pada gas alam, gas buang regenerator amine, fuel gas, synthesis gas, serta aliran oksigen yang mengandung gas limbah yang tidak dapat diproses dengan pelarut.

6.BLENDING
Proses blending adalah penambahan bahan-bahan aditif kedalam fraksi minyak bumi dalam rangka untuk meningkatkan kualitas produk tersebut. Bensin yang memiliki berbagai persyaratan kualitas merupakan contoh hasil minyak bumi yang paling banyak digunakan di barbagai negara dengan berbagai variasi cuaca. Untuk memenuhi kualitas bensin yang baik, terdapat sekitar 22 bahan pencampur yang dapat ditambanhkan pada proses pengolahannya.
Diantara bahan-bahan pencampur yang terkenal adalah tetra ethyl lead (TEL). TEL berfungsi menaikkan bilangan oktan bensin. Demikian pula halnya dengan pelumas, agar diperoleh kualitas yang baik maka pada proses pengolahan diperlukan penambahan zat aditif. Penambahan TEL dapat meningkatkan bilangan oktan, tetapi dapat menimbulkan pencemaran udara.









BAB III
Fraksi-Fraksi dan Kegunaan Minyak Bumi

Minyak mentah (crude oil) sebagian besar tersusun dari senyawa-senyawa hidrokarbon jenuh (alkana). Adapun hidrokarbon tak jenuh (alkena, alkuna dan alkadiena) sangat sedikit dkandung oleh minyak bumi, sebab mudah mengalami adisi menjadi alkana.
Oleh karena minyak bumi berasl dari fosil organisme, mak minyak bumi mengandung senyawa-senyawa belerang (0,1 sampai 7%), nitrogen (0,01 sampai 0,9%), oksigen (0,6-0,4%) dan senyawa logam dalam jumlah yang sanagt kecil. Minyak mentah dipisahkan menjadi sejumlah fraksi-fraksi melalui proses destilasi (penyulingan)
Pemisahan minyak mentah ke dalam komponen-komponen murni (senyawa tunggal) tidak mungkin dilakukan dan juga tidak prakstis sebab terlalu banyak senyawa yang ada dalam minyak tersebut dan senyawa hidrokarbon memiliki isomer-isomer dengan titik didih yang berdekatan. Fraksi-fraksi yang diperoleh dari destilasi minyak bumi adalah campuran hidrokarbon yang mendidih pada trayek suhu tertentu. Misalnya fraksi minyak tanah (kerosin) tersusun dari campuran senyawa-senyawa yang mendidih antar 1800C-2500C. Proses destilasi dikerjakan dengan menggunakan kolom atau menara destilasi.
Proses pertama dalam pemrosesan minyak bumi adalah fraksionasi dari minyak mentah dengan menggunakan proses destilasi bertingkat, adapun hasil yang diperoleh adalah sebagai berikut:
Minyak bisa menguap : minyak-minyak pelumas, lilin, parafin, dan vaselin.
Bahan yang tidak bisa menguap : aspal dan arang minyak bumi.

Kegunaan Minyak Bumi
Pengkilangan/penyulingan (refening) adalah proses perubahan minyak mentah menjadi produk seperti:
  1. Gas Alam
    Gas dari hasil distilasi yang dipergunakan untuk keperluan bahan bakar rumah tangga atau pabrik.
2.      Bensin
Bensin digunakan:
o    Sebagai bahan bakar motor (Gbr. 14)
o    Bahan ekstraksi pelarut dan pembersih.
o    Bahan bakar penerangan dan pemanasan.
3.      Nafta
Nafta adalah material yang memiliki titik didih antara gasolin dan kerosin yang digunakan untuk :
o    Pelarut dry cleaning (pencuci)
o    Pelarut karet
o    Bahan awal etilen
o    Bahan bakar jet dikenal sebagai JP-4
4.       Kerosin
Kerosin digunakan sebagai
o    Minyak tanah
o    Bahan bakar jet dikenal dengan air plane
5.       Solar dan diesel
Solar dan diesel digunakan sebagai
o    Pada bahan bakar motor, diesel tipe besar (seperti Bus & Truk )
o    Memproduksi uap
o    Mencairkan hasil peridustrian
o    Membakar batu
o    Mengerjakan panas dari logam
6.    Minyak pelumas (Oli)
digunakan untuk melumasi mesin-mesin.

7.    Lilin
Digunakan untuk penerangan, kertas pembungkus berlapis, lilin batik, korek api, bahan pengkilap seperti semir sepatu.

8.      Minyak bakar
Digunakan sebagai bahan bakar di kapal, industri pemanas dan pembangkit listrik.

9.      Bitumen
Materi aspal digunakan sebagai lapisan anti korosi, isolasi listrik dan pengedap suara pada lantai.









Jika dibuat tabel kegunaan minyak bumi adalah sebaga berikut :
Fraksi
Jumlah atom C
Titik didih (°C)
Kegunaan
Gas
C1 - C4
< 20
Bahan bakar LPG dan bahan baku untuk senyawa organik.
Bensin (Gasolin)
C5 - C10
40 - 180
Bahan bakar organik.
Nafta
C6 - C10
70 - 180
Nafta diperoleh dari fraksi bensin, digunakan untuk sintetis senyawa organik, pembuatan plastik, karet sintetis, detergen, obat, cat, bahan pakaian dan kosmetik.
Kerosin
C11 - C14
180 - 250
Digunakan sebagai bahan bakar pesawat udara dan bahan bakar kompor parafin.
Minyak solar dan diesel
C15 - C17
250 - 300
Digunakan sebagai bahan bakar kendaraan bermesin diesel dengan rotasi tinggi.
Minyak pelumas
C18 - C20
300 - 350
Digunakan sebagai minyak pelumas. Hal ini terkait dengan kekentalannya (Viskositas) yang cukup besar.
Lilin
> C20
> 350
Sebagai lilin parafin untuk membuat lilin, kertas pembungkus berlapis, dll.
Minyak bakar
> C20
> 350
Bahan bakar dikapal, industri pemanas dan pembangkit listrik.
Bitumen
> C40
> 350
Materi aspal jalan dan atap bangunan, anti korosi, isolasi listrik, kedap suara pada lantai













BAB IV
Dampak dan Problematika (Permasalahan) Minyak Bumi

1.  Sumber Bahan Pencemaran
  1. Pembakaran Tidak Sempurna
  2. Menghasilkan asap yang mengandung gas karbon monoksida (CO), partikel karbon (jelaga), dan sisa bahan bakar (hidroksida).
  3. Pengotor dalam Bahan Bakar
  4. Bahan bakar fosil mengandung sedikit belerang yang akan menghasilkan oksida belerang (SO2 atau SO3).
  5. Bahan Aditif (Tambahan) dalam Bahan Bakar
  6. Bensin yang ditambahi tetraethyllead (TEL) yang punya rumus molekul Pb(C2H5)4 akan menghasilkan partikel timah hitam berupa PbBr2.
2.  Asap Buang Kendaraan Bermotor

a. Gas Karbon Dioksida (CO2)
Sebenarnya, gas karbon dioksida tidak berbahaya. Tetapi, gas karbon dioksida tergolong gas rumah kaca, sehingga peningkatan kadar gas karbon dioksida di udara dapat mengakibatkan peningkatan  suhu permukaan bumi yang disebut pemanasan global.


b. Gas Karbon Monoksida (CO)
Gas karbon monoksida tidak berwarna dan berbau, sehingga kehadirannya tidak diketahui. Gas karbon monoksida bersifat racun, dapat menimbulkan rasa sakit pada mata, saluran pernapasan, dan paru-paru. Bila masuk ke dalam darah melalui pernapasan, gas karbon monoksida bereaksi dengan hemoglobin darah, membentuk karboksihemoglobin (COHb).
CO + Hb → COHb
Hemoglobin seharusnya bereaksi dengan oksigen menjadi oksihemoglobin (O2Hb) dan dibawa ke sel-sel jaringan tubuh yang memerlukan.
O2 + Hb → O2Hb
Namun, afinitas gas karbon monoksida terhadap hemoglobin sekitar 300 kali lebih besar daripada oksigen. Bahkan hemoglobin yang telah mengikat oksigen dapat diserang oleh gas karbon monoksida.
CO + O2Hb → COHb + O2
Jadi, gas karbon monoksida menghalangi fungsi vital hemoglobin untuk membawa oksigen bagi tubuh.
Cara mencegah peningkatan gas karbon monoksida di udara adalah dengan mengurangi penggunaan kendaraan bermotor dan pemasangan pengubah katalitik pada knalpot.

c. Oksida Belerang (SO2 dan SO3)
Belerang dioksida yang terhisap pernapasan bereaksi dengan air di dalam saluran pernapasan, membentuk asam sulfit yang dapat merusak jaringan dan menimbulkan rasa sakit. Bila SO3 terhisap, yang terbentuk adalah asam sulfat (lebih berbahaya). Oksida belerang dapat larut dalam air hujan dan menyebabkan terjadi hujan asam.


d. Oksida Nitrogen (NO dan NO2)
Campuran NO dan NO2 sebagai pencemar udara biasa ditandai dengan lambang NOx. Ambang batas NOx di udara adalah 0,05 ppm. NOx di udara tidak beracun (secara langsung) pada manusia, tetapi NOx ini bereaksi dengan bahan-bahan pencemar lain dan menimbulkan fenomena asbut (asap-kabut). Asbut menyebabkan berkurangnya daya pandang, iritasi pada mata dan saluran pernapasan, menjadikan tanaman layu, dan menurunkan kualitas materi.

e. Partikel Timah Hitam
Senyawa timbel dari udara dapat mengendap pada tanaman sehingga bahan makanan terkontaminasi. Keracunan timbel yang ringan dapat menyebabkan gejala keracunan timbel, seperti sakit kepala, mudah teriritasi, mudah lelah, dan depresi. Keracunan yang lebih hebat menyebabkan kerusakan otak, ginjal, dan hati.


3. Pengubah Katalitik
Salah satu cara untuk mengurangi bahan pencemar yang berasal dari asap kendaraan bermotor adalah memasang pengubah katalitik pada knalpot kendaraan. Pengubah katalitik berupa silinder dari baja tahan karat yang berisi suatu struktur berbentuk sarang lebah yang dilapisi katalis (biasanya platina). Pada separuh bagian pertama dari pengubah katalitik, karbon monoksida bereaksi dengan nitrogen monoksida membentuk karbon dioksida dan gasnitrogen.
katalis
2CO(g) + 2NO(g) → 2CO2(g) + N2(g)
Gas-gas racun gas tak beracun Pada bagian berikutnya, hidrokarbon dan karbon monoksida (jika masih ada) dioksidasi membentuk karbon dioksida dan uap air. Pengubah katalitik hanya dapat berfungsi jika kendaraan menggunakan bensin tanpa timbel.
4. Efek Rumah Kaca
Berbagai gas dalam atmosfer, seperti karbon dioksida, uap air, metana, dan senyawa keluarga CFC, berlaku seperti kaca yang melewatkan sinar tampak dan ultraviolet tetapi menahan radiasi inframerah. Oleh karena itu, sebagian besar dari sinar matahari dapat mencapai permukaan bumi dan menghangatkan atmosfer dan permukaan bumi. Tetapi radiasi panas yang dipancarkan permukaan bumi akan terperangkap karena diserap oleh gas-gas rumah kaca.
Efek rumah kaca berfungsi sebagai selimut yang menjaga suhu permukaan bumi rata-rata 15˚C. Tanpa karbon dioksida dan uap air di atmosfer, suhu rata-rata permukaan bumi diperkirakan sekitar –25˚C. Jadi, jelaslah bahwa efek rumah kaca sangat penting dalam menentukan kehidupan di bumi. Akan tetapi, peningkatan kadar dari gas-gas rumah kaca dapat menyebabkan suhu permukaan bumi menjadi terlalu tinggi sehingga dapat mneyebabkan berbagai macam kerugian.




5.  Hujan Asam

Air hujan biasanya sedikit bersifat asam (pH sekitar 5,7). Hal itu terjadi karena air hujan tersebut melarutkan gas karbon dioksida yang terdapat dalam udara, membentuk asam karbonat.
CO2(g) + H2O(l) → H2CO3(aq)

Asam Karbonat
Air hujan dengan pH kurang dari 5,7 disebut hujan asam.

a. Penyebab Hujan Asam
SO2(g) + H2O(l) → H2SO3(aq)
asam sulfit
SO3(g) + H2O(l) → H2SO4(aq)
asam sulfat
2NO2(g) + H2O(l) → HNO2(aq) + HNO3(aq)
asam nitrit asam nitrat

b. Masalah yang Ditimbulkan Hujan Asam
- Kerusakan Hutan
- Kematian Biota Air
- Kerusakan Bangunan
Bahan bangunan sedikit-banyak mengandung kalsuim karbonat. Kalsium karbonat larut dalam asam, maka dapat bereaksi.
CaCO3(s) + 2HNO3(aq) → Ca(NO3)2(aq) + H2O(l) + CO2(g)

c. Cara Menangani Hujan Asam
- Menetralkan asam
- Mengurangi emisi SO2
- Mengurangi emisi oksida nitrogen



















Kesimpulan




   Proses pembentukan minyak bumi yaitu berasal dari reaksi kalsium karbida, CaC2 (dari reaksi antara batuan karbonat dan logam alkali) dan air yang menghasilkan asetilena yang dapat berubah menjadi minyak bumi pada temperatur dan tekanan tinggi.
Produk hasil pengolahan minyak bumi antara lain : Bahan bakar, napta, gasoline, kerosin, minyak solar, minyak pelumas dan residu. Minyak bumi selain bahan bakar juga sebagai bahan industri kimia yang penting dan bermanfaat dalam kehidupan sehari-hari yang disebut petrokimia.



Dampak yang ditimbulkan dari pembakaran bahan bakar yang tidak sempurna Pembakaran bahan bakar yang tidak sempurna, akan menghasilkan senyawa-senyawa kimia yang dalam bentuk gas dapat mencemari udara dan kadang-kadang mengasilkan partikel-pertikel yang menimbulkan asap cukup tebal, sehingga dapat menyebabkan terjadinya pencemaran udara.
Pencemaran lain adalah gas karbon monoksida, Co, gas ini berbahaya pada tubuh manusia karena lebih mudah terikat pada hemoglobin darah, sehingga kemampuan darah mengikat oksigen menjadi menurun.






















Saran

Oleh karena minyak bumi itu proses pembentukannya lama, maka kita harus berhemat dalam pemanfaatannya, agar minyak bumi itu tidak cepat habis. Dan penggunaan bensin / bahan bakar haruslah yang tidak berdampak negatif terhadap lingkungan alam sekitarnya







DAFTAR PUSTAKA


ü  Chang, Raymond.2002.Chemistry.edisi ke-7 New York : McGraw Hill

ü  Departemen pendidikan dan Kebudayaan. 1995. Glosarium Kimia. Jakarta Balai Pusaka

ü  Ika Ratna Sari, S.Pd. 2006. Metode Belajar Efektif Kimia : Jawa Tengah. CV Media Karya Putra.






 SEMOGA BERMANFAAT
Powered by: Zona Intranet Member
#PaniqueCreats

Komentar

Postingan populer dari blog ini

PROPOSAL PERMOHONAN SEWA KANTIN

SOAL-SOAL BANGUN DATAR SEGI EMPAT

MAKALAH ULTRASONOGRAFI (USG)